A lusin type theorem for gradients
نویسندگان
چکیده
منابع مشابه
A Quantitative Lusin Theorem for Functions in BV
We extend to the BV case a measure theoretic lemma previously proved by DiBenedetto, Gianazza and Vespri ([1]) in W 1,1 loc . It states that if the set where u is positive occupies a sizable portion of a open set E then the set where u is positive clusters about at least one point of E. In this note we follow the proof given in the Appendix of [3] so we are able to use only a 1−dimensional Poin...
متن کاملA Saitô–tomita–lusin Theorem for Jb∗-triples and Applications
A theorem of Lusin is proved in the non-ordered context of JB∗-triples. This is applied to obtain versions of a general transitivity theorem and to deduce refinements of facial structure in closed unit ballls of JB∗-triples and duals.
متن کاملLusin type theorems for Radon measures
We add to the literature the following observation. If μ is a singular measure on R which assigns measure zero to every porous set and f : R → R is a Lipschitz function which is non-differentiable μ-a.e., then for every C function g : R → R it holds μ{x ∈ Rn : f(x) = g(x)} = 0. In other words the Lusin type approximation property of Lipschitz functions with C functions does not hold with respec...
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1991
ISSN: 0022-1236
DOI: 10.1016/0022-1236(91)90104-d